135 research outputs found

    Caracterización química y cuantificación del rendimiento de extracción de pigmento en siete accesiones mexicanas de Bixa orellana

    Get PDF
    Achiote (Bixa orellana) is a plant used for obtaining a natural dye rich on carotenoids (mainly bixin and norbixin); it is also the plant species with the highest content of tocotrienols in nature. In the present work, the pigment extraction yield of seven Mexican accessions of Bixa orellana was quantified. Also color parameters and content of tocotrienols, tocopherols, norbixin, bixin, total phenolic compounds and antioxidant capacity were evaluated in the corresponding annatto extracts. The highest percentage of pigment extraction yield was obtained with KOH (4.84%). Accessions 43 (L*= 4.01 ± 0.79, C*= 7.33 ± 1.07, h= 25.76 ± 6.35) and 50 (L*= 3.17 ± 0.64, C*= 6.81 ± 0.53, h= 26.41 ± 4.41) had the lowest color values, meaning these accessions had a darker and redder color. Four accessions showed the highest content of bixin: accession 48 (3.1%), 45 (2.6%) 43 (2.4%) and 47 (2.2%). Accession 50 had showed the highest content of total phenolic compounds and of tocotrienols (T3), mainly the isoform δ-T3 (5.03 ± 0.64 mg g−1 Seed Dry Weight), as well as the highest antioxidant capacity.El achiote (Bixa orellana) es una planta utilizada para obtener un colorante natural rico en carotenoides (principalmente bixina y norbixina); además, es la especie vegetal con el mayor contenido de tocotrienoles. En este trabajo, se determinó el rendimiento de extracción de pigmento de siete accesiones mexicanas de Bixa orellana. También se evaluaron los parámetros de color y el contenido de tocotrienoles, tocoferoles, norbixina, bixina, compuestos fenólicos totales y la capacidad antioxidante en extractos de annato. El mayor porcentaje de rendimiento de extracción de pigmento fue obtenido con KOH (4.847905%). Las accesiones 43 (L*= 4.01 ± 0.79, C*= 7.33 ± 1.07, h= 25.76 ± 6.35) y 50 (L*= 3.17 ± 0.64, C*= 6.81 ± 0.53, h= 26.41 ± 4.41) presentaron los valores más bajos de los párametros de color, lo que significa que estas accesiones tuvieron un color más oscuro y más rojo. Cuatro accesiones mostraron el mayor contenido de bixina: accesión 48 (3.1%), 45 (2.6%) 43 (2.4%) and 47 (2.2%). La accession 50 mostró el mayor contenido de compuestos fenólicos totales y de tocotrienoles (T3), principalmente la isoforma δ-T3 (5.03 ± 0.64 mg g-1 Peso Seco), así como también la mayor capacidad antioxidante.Fil: Raddatz Mota, D.. Universidad Autónoma Metropolitana; MéxicoFil: Pérez Flores, L. J.. Universidad Autónoma Metropolitana; MéxicoFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Insani, Ester Marina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Asis, Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Mendoza Espinoza, J. A.. Universidad Nacional Autónoma de México; MéxicoFil: Díaz de León Sánchez, F.. Universidad Autónoma Metropolitana; MéxicoFil: Rivera Cabrera, F.. Universidad Autónoma Metropolitana; Méxic

    The Italian endemic forest plants: an annotated inventory and synthesis of knowledge

    Get PDF
    Background and aims – Forests are among the most threatened ecosystems worldwide, and endemic plants are often a vulnerable component of the flora of a given territory. So far, however, understory forest endemics of southern Europe have received little attention and are poorly known for several aspects. Material and methods – We developed the first list of native vascular plants that are restricted to Italian forests. Available information on taxonomy, regional distribution, ecology, biology, functional traits, and conservation status was collected for each taxon, allowing to identify major knowledge gaps and calculate baseline statistics. Key results – The list includes 134 taxa, most of which are linked to closed-canopy forest habitats, while the others are also found in margins and gaps. The forest and non-forest Italian endemic flora differed in terms of taxonomic and life-form distribution. The rate and density of forest endemism increased with decreasing latitude and were highest in Sicily, Calabria, and Basilicata, where paleoendemic mono- or oligotypic genera also occur. Endemic phanerophytes were especially numerous on islands. Beech and deciduous oak forests were the most important habitats, but hygrophilous woodlands also host numerous endemics. Overall, the ecology, biology, and functional traits of the forest endemic taxa are still poorly known. The ratio diploids/polyploids was highest in the south and on the islands. Almost 24% of the taxa were assessed as “Critically Endangered”, “Endangered”, or “Vulnerable”, and 24% were categorized as “Data Deficient”, based on the IUCN system. Increasing frequency and intensity of fires was the most frequent threat. Conclusions – This work can contribute to implement the European forest plant species list and serve as a basis for further research on a unique biological heritage of the continent. However, more knowledge about these globally rare taxa is needed, to support their conservation in changing forest landscapes

    Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato

    No full text
    Pectin is a main component of the plant cell wall and is the most complex family of polysaccharides in nature. Its composition is essential for the normal growth and morphology pattern, as demonstrated by pectin-defective mutant phenotypes. Besides this basic role in plant physiology, in tomato, pectin structure contributes to very important quality traits such as fruit firmness. Sixty-seven different enzymatic activities have been suggested to be required for pectin biosynthesis, but only a few genes have been identified and studied so far. This study characterized the tomato galacturonosyltransferase (GAUT) family and performed a detailed functional study of the GAUT4 gene. The tomato genome harbours all genes orthologous to those described previously in Arabidopsis thaliana, and a transcriptional profile revealed that the GAUT4 gene was expressed at higher levels in developing organs. GAUT4-silenced tomato plants exhibited an increment in vegetative biomass associated with palisade parenchyma enlargement. Silenced fruits showed an altered pectin composition and accumulated less starch along with a reduced amount of pectin, which coincided with an increase in firmness. Moreover, the harvest index was dramatically reduced as a consequence of the reduction in the fruit weight and number. Altogether, these results suggest that, beyond its role in pectin biosynthesis, GAUT4 interferes with carbon metabolism, partitioning, and allocation. Hence, this cell-wall-related gene seems to be key in determining plant growth and fruit production in tomato

    Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds

    Get PDF
    Introduction: To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. Objective: This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. Methods: The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. Results: Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. Conclusions: Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.Fil: Nunes Nesi, Adriano. Max Planck Institute Of Molecular Plant Physiology; Alemania. Universidade Federal de Viçosa.; BrasilFil: Alseekh, Saleh. Center Of Plant Systems Biology And Biotechnology; Bulgaria. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: de Oliveira Silva, Franklin Magnum. Universidade Federal de Viçosa.; BrasilFil: Omranian, Nooshin. Max Planck Institute Of Molecular Plant Physiology; Alemania. Center Of Plant Systems Biology And Biotechnology; BulgariaFil: Lichtenstein, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Mirnezhad, Mohammad. Leiden University; Países BajosFil: Romero González, Roman R.. Leiden University; Países BajosFil: Sabio y Garcia, Julia Veronica. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias Castelar. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Conte, Mariana. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias Castelar. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Leiss, Kirsten A.. Leiden University; Países BajosFil: Klinkhamer, Peter G. L.. Leiden University; Países BajosFil: Nikoloski, Zoran. University of Potsdam; Alemania. Max Planck Institute of Molecular Plant Physiology; AlemaniaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias Castelar. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Fernie, Alisdair R.. Max Planck Institute of Molecular Plant Physiology; Alemania. Center of Plant System Biology and Biotechnology; Bulgari

    miSolRNA: A tomato micro RNA relational database

    Get PDF
    Background: The economic importance of Solanaceae plant species is well documented and tomato has become a model for functional genomics studies. In plants, important processes are regulated by microRNAs (miRNA). Description: We describe here a data base integrating genetic map positions of miRNA-targeted genes, their expression profiles and their relations with quantitative fruit metabolic loci and yield associated traits. miSolRNA provides a metadata source to facilitate the construction of hypothesis aimed at defining physiological modes of action of regulatory process underlying the metabolism of the tomato fruit. Conclusions: The MiSolRNA database allows the simple extraction of metadata for the proposal of new hypothesis concerning possible roles of miRNAs in the regulation of tomato fruit metabolism. It permits i) to map miRNAs and their predicted target sites both on expressed (SGN-UNIGENES) and newly annotated sequences (BAC sequences released), ii) to co-locate any predicted miRNA-target interaction with metabolic QTL found in tomato fruits, iii) to retrieve expression data of target genes in tomato fruit along their developmental period and iv) to design further experiments for unresolved questions in complex trait biology based on the use of genetic materials that have been proven to be a useful tools for map-based cloning experiments in Solanaceae plant species

    A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit

    Get PDF
    In tomato, numerous wild-related species have been demonstrated to be untapped sources of valuable genetic variability, including pathogen-resistance genes, nutritional, and industrial quality traits. From a collection of S. pennellii introgressed lines, 889 fruit metabolic loci (QML) and 326 yield-associated loci (YAL), distributed across the tomato genome, had been identified previously. By using a combination of molecular marker sequence analysis, PCR amplification and sequencing, analysis of allelic variation, and evaluation of co-response between gene expression and metabolite composition traits, the present report, provides a comprehensive list of candidate genes co-localizing with a subset of 106 QML and 20 YAL associated either with important agronomic or nutritional characteristics. This combined strategy allowed the identification and analysis of 127 candidate genes located in 16 regions of the tomato genome. Eighty-five genes were cloned and partially sequenced, totalling 45 816 and 45 787 bases from S. lycopersicum and S. pennellii, respectively. Allelic variation at the amino acid level was confirmed for 37 of these candidates. Furthermore, out of the 127 gene-metabolite co-locations, some 56 were recovered following correlation of parallel transcript and metabolite profiling. Results obtained here represent the initial steps in the integration of genetic, genomic, and expressional patterns of genes co-localizing with chemical compositional traits of the tomato fruit

    Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening

    Get PDF
    Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species.Fil: Centeno, Danilo C.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Osorio, Sonia. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Nunes Nesi, Adriano. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Bertolo, Ana L. F.. Cornell University; Estados UnidosFil: Carneiro, Raphael T.. Cornell University; Estados UnidosFil: Araújo, Wagner L.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Steinhauser, Marie Caroline. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Michalska, Justyna. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Rohrmann, Johannes. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Geigenberger, Peter. Technische Universitat München; AlemaniaFil: Oliver, Sandra N.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Stitt, Mark. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rose, Jocelyn K. C.. Cornell University; Estados UnidosFil: Fernie, Alisdair R.. Max Planck Institute Of Molecular Plant Physiology; Alemani

    Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight

    Get PDF
    Indexación: Web of Science; PubMedBackground Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages. Results A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. Conclusions We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-

    Consolidating metabolite identifiers to enable contextual and multi-platform metabolomics data analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of data from high-throughput experiments depends on the availability of well-structured data that describe the assayed biomolecules. Procedures for obtaining and organizing such meta-data on genes, transcripts and proteins have been streamlined in many data analysis packages, but are still lacking for metabolites. Chemical identifiers are notoriously incoherent, encompassing a wide range of different referencing schemes with varying scope and coverage. Online chemical databases use multiple types of identifiers in parallel but lack a common primary key for reliable database consolidation. Connecting identifiers of analytes found in experimental data with the identifiers of their parent metabolites in public databases can therefore be very laborious.</p> <p>Results</p> <p>Here we present a strategy and a software tool for integrating metabolite identifiers from local reference libraries and public databases that do not depend on a single common primary identifier. The program constructs groups of interconnected identifiers of analytes and metabolites to obtain a local metabolite-centric SQLite database. The created database can be used to map in-house identifiers and synonyms to external resources such as the KEGG database. New identifiers can be imported and directly integrated with existing data. Queries can be performed in a flexible way, both from the command line and from the statistical programming environment R, to obtain data set tailored identifier mappings.</p> <p>Conclusions</p> <p>Efficient cross-referencing of metabolite identifiers is a key technology for metabolomics data analysis. We provide a practical and flexible solution to this task and an open-source program, the metabolite masking tool (MetMask), available at <url>http://metmask.sourceforge.net</url>, that implements our ideas.</p
    corecore